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Abstract

/The causes and consequences of microbial variation across biomes have beeh
the subject of intense study for over a century. Specifically, bacterial niche parti-
tioning has been shown to play fundamental roles in the structuring and mainte-
nance of global biogeochemical cycles. Additionally, eukaryotic organisms are
inhabited by complex microbial communities, collectively named the microbiota,
that have been shown to modulate diverse host physiological traits ultimately im-
pacting the host fitness. A bottleneck to unraveling the vast uncharted bacterial
diversity across biomes has been the lack of robust technology to faithfully ampli-
fy the femtogram quantities of DNA of a single bacterium. Here we present Re-
solveDNA | a whole-genome amplification technology, to reconstruct high-quality
genomes.

We benchmarked the ability of our protocol to yield high quality reconstructed
bacterial genomes by performing whole genome sequencing of a FACS-sorted
co-culture experiment between the gram-positive bacteria B. subtillis and the
gram-negative bacteria E. coli. Following sorting, library preparation and se-
quencing, we filtered low quality reads and performed de novo bacterial assem-
bly followed up by genome deconvolution using differential depth coverage
across the assembly contigs. Evaluation of the quality of the assemblies was per-
formed using an unbiased phylogenetic single-copy marker approach whichvali-
dated that the reconstructed assemblies in our experiment had levels of com-
pleteness over 95% and levels of contamination lower than 1%. Finally, we devel-
oped a novel computational pipeline, that leverages random fragments of con-
taminant DNA within an amplified reaction, to estimate that the high-quality as-
semblies from our experiment were derived from samples with different levels of
cells within each reaction, ranging from 1 cell up to 5 cells. The data presented
here demonstrates that ResolveDNA can be used to assemble bacterial ge-
nomes, at different levels of phylogenetic divergence and cell quantity, with high
reliability thus permitting to deconvolute microbial communities into their original
constitutes with unseen quality.
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Methods

/S_ingle Bacteria Isolation
Three sample types were isolated 1) gram negative bacteria (E.coli), 2) gram posi-
tive bacteria (B. subtilis), and 3) a mixture of these species, to evaluate the perfor-
mance of the ResolveDNA™ Microbiome WGA Kit. Bacterial stocks of each spe-
cies were grown in LB broth for 18 hours at 37C. Afterwards, cultures were filtered
through a 20 pm mesh filter to remove large cell clusters and counted by O.D.
measurement, then an aliquot of each sample was mixed to create the mixed
sample at a 1:1 cell ratio. Samples were centrifuged, resuspended in 1X dPBS
that was 0.2 um filter-sterilized.

Single-cell bacteria were sorted

into 96-well plates containing 1 UL ResolveDNA Cell Buffer using a Sony SH800
sorter equipped with a 130um sorting chip. Sorted plates were briefly vortexed
and flash frozen on dry ice, followed by -80C storage until ready to perform PTA
DNA Amp

lification with the Resolve DNA™ Microbiome WGA Kit.

The ResolveDNA Microbiome protocol was followed, resulting in amplified bacte-
rial DNA. This DNA was then purified with the Resolve DNA™ bead purification Kit.
We found individual bacteria typically yielded ~1 ug of amplified DNA and had an
average size range of 900 bp. Purified, amplified DNA was then transformed into
sequencing libraries using the ResolveDNA™ Library Preparation kit. Sequencing
libraries were again purified and analyzed by TapeStation 4200 (Agilent) which
demonstrated optimal size of PTA amplified single bacterial genome libraries
(~500bp). These libraries were then sequenced using the lllumina MiniSeq Plat-
form at 2 million paired end reads per library. Raw sequencing data were ana-
lyzed for quality, contig assembly, and alignment.
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Estimation of the number of amplified cells
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Results
(1

e results from this work demonstrate the feasibility of PTA to recover high quality sin-
gle-cell bacterial genomes (SAGs) with a high level of completeness (>95% complete-
ness based on the presence of taxon specific single-copy markers).

Analysis of single bacteria demonstrated the ability to detect nearly the entire bacterial
genome from each individual cell. We found that the SAGs obtained, from both bacteria
species tested, approached the empirically estimated genome size (Panels a,d). For
this analysis approximately 20 samples of each bacteria were sequenced (12 repre-
sentative shown) (We noted minor differences in coverage where single cell genome of
E. colitypically covered ~90-95% of the genome, where single B. subtilis detected up
to 100% of the empirically estimated genome size. The data further detected minor
components of other (un-identified) contigs, however these are considered to be minor
contaminants, which based on the data do not affect the ability to identify the species/-
genus of origin (Panels a,d).

Having sequenced these individual bacteria, a third set of samples was prepared
where a combination of both the E. coli and B. subtilis were sorted into wells (Panels
g,h,i). Again, greater than 20 samples were processed (12 representative samples
shown). We found both bacterial species were detectable, with cumulative contigs
lengths that approximated the empirically estimated genome sizes for each species. In
many cases, it appears we dispensed more than one cell into each well, as both E. coli
and B. subtilis genomes were detected, however, in the last panel only B. subtilis was
detected, suggesting assay specificity. Trace amounts of human DNA and unidentified
species DNA was detected in these samples, however, the short contigs make these
reads easy to identify and remove (Panel g).

In addition, we employed an unbiased de novo phylogenetic approach that places as-
semblies in a representative bacterial phylogeny and estimates completeness of an as-
sembly using taxon-specific single copy markers (Panels b,e,h). This second approach
quantitatively validated the high-quality nature of the SAGs observed employing the cu-
mulative contig length approach.

Finally, we developed a computational approach that utilized contaminant (Other,
Homo sapiends) DNA material within a reaction to estimate the total number of focal
cells within a reaction using the ratio of coverage between focal strain contigs and con-
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Completeness
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Focal strain contigs

taming DNA contigs (Panels c,f,i). This analysis allowed us to estimate that our assem-
Q)Iies were obtained from reactions containing a range of cells between 1-6 cells.
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— Legends ~
Panels (a,c,e): Contig cumulative length plots showing the number of contigs presents in

each sequenced well. Colors of the contig denote their taxonomic classification based on
taxonomic read assignation. Dashed horizontal lines in the plot denote the empirically
estimated genome size of the bacterial species in the experiment based on
representative complete genomes downloaded from NCBI RefSeq. Note that the levels of
contamination per well is minimal.

Panels (b,d,f): Heatmaps showing the estimated level of completeness for the assembled
genomes using a single copy marker phylogenomic approach.

. J

i
¥ r
r

[
|
C d

ir
L

Per sample ratio of coverage

between contigs

hl

Assembly graph of novel strain

enomi

i |

Legends

Panels (g,h,i): We developed a computational pipeline that leverages read-level taxﬁ

nomic assignation and contig-coverage to estimate the number of focal cells amplified

within a reaction. Briefly, we assigned a taxonomic classification to each assembled

contig based on read-level taxonomic assignment. Next, we estimate coverage across

all contigs in the dataset and perform a ratio of coverages between focal contigs (E.g
\E. coli) against contaminant contigs (assuming they are present at 1 copy).
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deconvoluted from a Salt Marsh sample

CheckM Completeness: 94.84
Number of bins: 344

/ Legends \
Panel J: Assembly graph of the reconstructed genome for

an uncharacterized strain isolated from Salt marsh utilizing
BioSkryb’s ResolveDNA.

The novel discovered strain is placed in a genus belonging
to the family Cyclobacteriaceae.Note the overall complete-
ness and contiguity (Number of bins) of the obtained .as-
sembly
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